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Abstract— Estimating robot pose and joint angles is significant
in advanced robotics, enabling applications like robot collabora-
tion and online hand-eye calibration. However, the introduction
of unknown joint angles makes prediction more complex than
simple robot pose estimation, due to its higher dimensionality.
Previous methods either regress 3D keypoints directly or utilise a
render&compare strategy. These approaches often falter in terms
of performance or efficiency and grapple with the cross-camera
gap problem. This paper presents a novel framework that bifur-
cates the high-dimensional prediction task into two manageable
subtasks: 2D keypoints detection and lifting 2D keypoints to
3D. This separation promises enhanced performance without
sacrificing the efficiency innate to keypoint-based techniques. A
vital component of our method is the lifting of 2D keypoints to
3D keypoints. Common deterministic regression methods may
falter when faced with uncertainties from 2D detection errors
or self-occlusions. Leveraging the robust modeling potential of
diffusion models, we reframe this issue as a conditional 3D
keypoints generation task. To bolster cross-camera adaptability,
we introduce the Normalised Camera Coordinate Space (NCCS),
ensuring alignment of estimated 2D keypoints across varying
camera intrinsics. Experimental results demonstrate that the pro-
posed method outperforms the state-of-the-art render &compare
method and achieves higher inference speed. Furthermore, the
tests accentuate our method’s robust cross-camera generalisation
capabilities. We intend to release both the dataset and code in
https://nimolty.github.io/Robokeygen/.

I. INTRODUCTION

Estimating robot pose and joint angles is crucial in
intelligent robotics with implications for multi-robot col-
laboration [1], online hand-eye calibration [2], and visual
servoing [3] for close-loop control. Extensive research has
been conducted on robot pose estimation, such as marker-
based easy-handeye [4] and learning-based online calibration
methods [5], [6], [7]. However, these approaches assume
known joint angles, a condition not always met. In multi-
robot collaborations, for instance, state data may be unshared,
necessitating concurrent robot pose and joint angle estimation.

Contrasting robot pose estimation with known versus
unknown joint angles, the latter reveals heightened complexity
due to increased degrees of freedom (e.g., from 6D to 13D for
Franka). Existing methods can be divided into two categories:
render&compare approaches [8] and keypoints-based meth-
ods [9]. RoboPose [8] extends render&compare [10], [11]
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Fig. 1. RoboKeyGen. Given RGB images, we aim to estimate the robot
pose and joint angles. We achieve this goal by decoupling it into two more
tractable tasks: 2D keypoints detection and lifting 2D keypoints to 3D.

strategies from rigid object pose estimation [12], [13] to robot
pose and joint angles estimation. However, this method suffers
from slow inference speed (1 FPS in single frame mode) due
to the iterative rendering. Conversely, SPDH [9] introduces a
Semi-Perspective Decoupled Heatmaps representation, which
extends the well-known 2D heatmaps to the 3D domain. It
enables direct prediction of the 3D coordinates of predefined
keypoints on the robot arm from a depth input and has a higher
inference speed (22FPS) compared to render&compare based
methods. However, this approach exhibits a low accuracy and
the proposed representation is theoretically limited by the
presence of cross-camera generalisation issue. In general, the
existing methods are faced with such limitations:

 The conflict between efficiency and performance.
o The cross-camera generalisation issue.

To address these challenges, we propose a novel framework
named RoboKeyGen. The basic idea is illustrated in Fig. [T}
Different from previous methods, we decouple this high-
dimensional prediction task into two sub-tasks: 2D keypoints
detection and lifting 2D keypoints to 3D. The former
focuses on extracting the 2D keypoints from the appearance
characteristics, while the latter concentrates on perspective
transformation and the robot’s structural information. This
decoupling enables our method to improve performance
while preserving the inherent efficiency of keypoints-based
approaches. Specifically, our method first predicts the 2D
projections of predefined keypoints. Then, we align these
projections into a normalised camera coordinate space. Sub-
sequently, we generate the 3D keypoints conditioned on the
normalised 2D keypoints. These 3D keypoints are then utilised
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to regress joint angles. Finally, an off-the-shelf pose-fitting
algorithm [14] is employed to estimate the robot pose.

Thanks to the significant advancements in 2D robot
keypoints detection [5], we focus more on addressing the
challenge of lifting these 2D keypoints to 3D and cross-
camera generalisation. Direct regression proves suboptimal
due to its failure to model the uncertainty brought by 2D
keypoints detection errors. Instead, modeling the conditional
distribution of 3D keypoints is more reasonable. Leveraging
the robust distribution modeling of diffusion-based mod-
els [15], [16], [13], we employ a diffusion model conditioned
on the estimated 2D keypoints to generate 3D keypoints. For
cross-camera generalisation, considering the diverse camera
intrinsic parameters has distinct projection transformations,
we introduce the normalised camera coordinate space (NCCS)
for 2D keypoint alignment, effectively addressing the issue
of cross-camera generalisation.

We provide a pipeline incorporating simulated training data
and real-world datasets from two depth cameras for evaluation.
Comparative analyses reveal our model’s superiority over
RoboPose [8] in performance and speed metrics, further
underscoring its robustness in cross-camera generalisation.

II. RELATED WORKS
A. Learning-based Robot Pose and Joint Angles Estimation

1) Robot pose estimation with known joint angles:
Recent advances in deep learning offer innovative methods
for robot pose recovery. Dream [5] uses a convolutional
network to regress 2D heatmaps and compute poses through
a Perspective-n-Point (PnP) RANSAC solver [17]. SGTA-
Pose [6] integrates temporal information to address self-
occlusion in pose estimation. Meanwhile, CtRNet [7] employs
a self-supervision framework, narrowing the sim-to-real gap
effectively. Notably, these methods depend on immediate joint
angles feedback, thus limiting their applicability.

2) Robot pose and joint angles estimation: When joint
angles are unknown, methods fall into two main categories:
render&compare, and 3D keypoint detection. RoboPose [§]
offers a render&compare framework for pose and joint
angles using a single RGB image but is limited by a 1 FPS
single-frame inference speed due to rendering. SPDH [9],
a depth-based approach, extends 2D to 3D heatmap pose
estimation but faces a cross-camera challenge. Our approach,
in contrast, combines the speed of keypoint methods with
a novel conditional 3D keypoints generation, addressing the
cross-camera gap more effectively than SPDH [9].

B. Diffusion Models

Diffusion models have gained significant attention in
generative modeling. Some works have focused on theoretical
aspects, such as training Noise Conditional Score Networks
(SMLD) with denoising score matching objectives [18],
[19], others introduced Denoising Diffusion Probabilistic
Models (DDPM) that employ forward and reverse Markov
chains [20], [21]. To provide a comprehensive understanding
of these models, Song [22] presented a unified perspective
that incorporates and explains the previously mentioned
approaches. Some studies also explored various applications

of diffusion models, including medical imaging [23], point
cloud generation [15], object rearrangement [16], [24], object
pose estimation [25], and human pose estimation [26].
Inspired by these advancements, we propose a novel diffusion-
based framework for robot pose and joint angles estimation,
specifically focusing on lifting 2D keypoints detection to
conditional 3D keypoints generation. To the best of our
knowledge, our method is the first exploration for learning
the robot arm’s structure via diffusion models.

III. METHOD
Task description. Given a live stream of RGB images {I},
we aim to estimate the Robot Pose {I'=(R,T) € SE(3)} and
joint angles {6 € R"} (where n denotes the amounts of joint
angles). Here we assume the forward kinematics and CAD
models of the robot arm and camera intrinsics are known.
Overview. We decouple the original high-dimensional task
into two more tractable, low-dimensional sub-tasks: 2D
keypoints detection and lifting 2D keypoints to 3D. We first
predict 2D projections of predefined keypoints ¢ from RGB
images I. Then we align these estimated keypoints ¢ into
the form ¢ in Normalised Camera Coordinate Space (NCCS).
Further, a diffusion model ®; is employed to model the
distribution (Pygq(X“™|€)) of 3D keypoints X" in camera
space conditioned on normalised 2D keypoints ¢. Finally, we
utilise a light regression network to predict joint angles 6
and recover 3D keypoints X" in robot space. We restore
the robot pose via pose fitting.
A. 2D Keypoints Detection and Canonicalisation

We firstly detect 2D keypoints ¢ from RGB images. Then,
considering that the distribution of X““" conditioned on 2D
keypoints projections ¢ changes as camera intrinsics change,
we align ¢ into normalised camera coordinate space ¢ to
ensure a unique and well-defined distribution Py, (X“™|¢).

1) 2D Keypoints Detection: We detect predefined 2D
keypoints ¢ € RV*? from the current RGB frame I and the
last estimated 2D keypoints, where N denotes the amounts of
keypoints. Specifically, to enable the 2D detection network
Y, focus on extracting features from the pure robot arm and
avoid disturbance from background textures, we first adopt the
real-time semantic segmentation network PIDNet-L [27] M to
segment the robot arm. Moreover, considering 2D keypoints
between consecutive frames change slightly, we then project
the estimated last frame’s 2D projections into positional
embedding priors .# through sinusoidal transformations [28]
and shallow MLPs as suggested in [22]. Finally, given the
RGB image I, segmentation mask and positional embedding
Z as input, an encoder-decoder detection network ¥, [29],
[30] is employed to predict the 2D keypoints ¢ of the current
frame.

2) 2D Keypoints Canonicalisation: For a given robot arm
with available forward kinematics and predefined keypoints,
we can easily find such an awkward property of Py, (X“"|c):
For a common projection ¢, cameras with different intrinsics
yield diverse 3D Ground Truth (GT) keypoints, which makes
the distribution Py, (X|c) poorly-defined. To eliminate this
issue, we project ¢ into a normalised camera coordinate
space (NCCS) ¢. Specifically, with known camera intrinsics
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Fig. 2. The inference pipeline of RoboKeyGen. (A) Combined with the RGB image /, predicted segmentation mask and positional embedding prior .7,
we firstly predict 2D keypoints ¢ through the detection network ¥,. (B) Conditioning on 2D detections, we generate 3D X" via the score network ®;.
(C) Finally, we predict joint angles from X" and recover X’°” based on URDF files. We do pose fitting between X and X" to acquire the robot pose.

{fx,f},cmcy} for i—th 2D keypomt ¢ = (W) Ce, we
transform ¢’ into & = (”;—‘” L 2. According to the pinhole
camera model (which is folfowed by most cameras in
robotics), this transformation equals & = (xl , i, ), where
(x',y',7') € X is the i-th keypoint’s coordinates in camera
space. Now we consider the new joint distribution 9 =
{(@x°m) = ({3, )My {05 DI ) ~ Para(€,X°™) ).
We observe the condition ¢ in Py, (X““"|¢) is decoupled from
camera intrinsics since it owns a normalised form regarding
only coordinates in camera space. In such situations, learning
the new conditional distribution Py, (X““"|¢) is essentially
ensuring the z-coordinates for each keypoint. In other words,
our method only requires to concentrate on the robot arm’s
structure with no disturbance from camera intrinsics.

B. Conditional 3D Keypoints Generation via Diffusion Model

This section will illustrate how to sample the predefined 3D
keypoints X““" conditioned on the normalised 2D keypoints
¢ in a generative modeling paradigm. Here we denote X €
RN*3 as 3D keypoints in camera space (X°“" in Fig. [2) for
simplicity. We assume the 2D-3D keypoints pair in each image
is sampled from an implicit joint distribution 2 = {(¢,X) ~
Piaa(E,X)}, and our objective is to model Py, (X|C).

1) Learning the score function ®¢: We adopt a score-
based diffusion model to model P,,,(X|¢). Specifically,
we take Variance Preserving (VP) Stochastic Differential
Equation (SDE) proposed in [22] to construct a continuous
time-dependent diffusion process {X(¢)}L,. X(0) originates
from Pyuq(X|c) and X(T) comes from the diffused prior
distribution pr. As ¢ increases, {X(¢)}!_, is given by :

X = —%B(t)th—i— VB dw )

where B(r) = B(0)+¢(B(1) —B(0)). B(0), B(1) and T are
set as 0.1, 20.0 and 1.0 respectively.

During Training, we aim to estimate the score function of
perturbed conditional distribution Vy log p,(X|¢) for all t:

1)|¢) :/pot(X t

where p, is the transition kernel and po(X(0)|¢) is exactly
Piua(X|€). Vxlogp;(X|é) can be estimated by training a

X(0)) - po(X(0)[€)ax(0) ()

score network @ : RN x R x RN — RN via

2(8) = B (e ) A (O Ee X (0)~ pyra(e.) Bx ()~ poy (X (1)1 (0)
(D (X (t),1]6) — V(i) log por (X (£)1X (0))[[5]}

where € is 0.0001 and A(z) is set as B(¢) suggested in [31].
The choice of VP SDE brings a closed form of pg as follows:

N (X(); X (0)e~ 2 oBWHs 1= JiB(5)ds) @)

It is ensured that the optimal solution to Eq. [3] denoted by
;. (X,1|C) equals Vx log p;(X|¢) according to [22].

2) Sampling via the DDIM [33] sampler: After training,
we can sample K groups of 3D Keypoints’ candidates {X j}f:1
via diffusion samplers.

To speed up the inference phase, we select a fast DDIM
sampler [33]. We iteratively generate X(7,_;) from X(7,) via
the following equation:

F

where {7;}”", is the sampling timesteps.
g, {bg}", and o; remain the same notation and
computation in [20]. &;(X (%), %|C) is the noise function and

can be computed as (—\/m‘bg( X(%),%[é)). In

our implementation, we set K as 10 and output the average

value of {X(Tl)j};(:y

C. Robot Pose and Joint Angles Estimation
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To further recover the robot’s configuration, we target
at estimating the robot’s joint angles. Intuitively, we can
connect the estimated 3D keypoints X““" sequentially and
regard them as a skeleton. To estimate the joint angles
from a skeleton, we only need to care about the positional
relationship between adjacent "bones". Hence, we train a
simple MLP to directly regress joint angles 8 from X"
With available robot’s forward kinematics and joint angles,
we can recover the whole robot’s configuration and compute
X" according to the URDF file. Finally, we take a robust
strategy using differentiable outliers estimation introduced
in [14] to implement the pose fitting between X“*" and X"’



TABLE I
QUANTITATIVE COMPARISON WITH BASELINES. T MEANS HIGHER IS BETTER, AND | MEANS LOWER IS BETTER. \//X DENOTE WHETHER JOINT

ANGLES ARE KNOWN. Ours (single-frame) AND Ours (online) DENOTE INITIALIZATION FROM GAUSSIAN NOISE AND THE PREDICTION OF THE LAST
FRAME, RESPECTIVELY. WE ALSO REPLACE THE BACKBONE IN [9] WITH RESNET-101[32] AS ANOTHER BASELINE SPDH-RESNET (Ours). FOR A FAIR
COMPARISON, WE TRAIN ALL THE METHODS LISTED ABOVE ON SIMRGBD-FRANKA AND REPORT ADD AND AUC ACROSS TWO DATASETS.

RealSense-Franka

AzureKinect-Franka

Method FPS
AUC@0.lmT Median(m)] Mean(m)|, AUC@0.lmT Median(m)] Mean(m)/

RoboPose (single-frame) [8] 29.01 0.081 0.116 32.00 0.069 0.106 1
RoboPose (online) [8] 31.78 0.073 0.105 39.83 0.047 0.083 16
SPDH-HRNet [9] 3.39 1.366 1.297 0.00 0.643 0.669 10
SPDH-SH [9] 17.24 0.251 0.272 0.00 0.844 0.854 22
SPDH-RESNET [9] (Ours) 19.46 0.090 0.135 0.00 0.793 0.789 18
Ours (single-frame) 67.00 0.027 0.035 60.72 0.030 0.049 12
Ours (online) 72.93 0.022 0.028 63.33 0.028 0.045 18

D. Implementation Details

To train the segmentation and detection network, we remain
the same augmentations, loss functions and training strategies
as suggested in [27], [29]. To train the score network CIDC,
we modify a vanilla fully connected network in [26] as the
backbone. We optimise the object in Eq. [3] for 2000 epochs
with a batch size of 4096, learning rate 0.0002 and Adam
optimiser. To train the joint angle regression network, we
design a shallow feedforward network. We train the network
for 720 epochs with a batch size of 3600 via AdamW
optimiser with initial learning rate 0.01 dropping by 0.1 at
epoch 150, 300, 450. See more details when code is released.

IV. EXPERIMENTS AND RESULTS
A. Datasets, Baselines and Metrics

1) Datasets: Since the public dataset in DREAM [5]
doesn’t provide temporal images for training and lacks depth
images, which are required for SPDH [9], we propose three
new datasets: a simulated training set, SimRGBD-Franka,
and two real-world testing sets, RealSense-Franka and
AzureKinect-Franka captured with different depth cameras.

SimRGBD-Franka: Following in [6] and [34], we create
this large-scale simulated dataset with Blender [35]. It com-
prises 4k videos, each with 3 consecutive frames, providing
RGB images, robot pose, joint angles, masks, IR images,
actual depth images, and simulated noisy depth images.

RealSense-Franka and AzureKinect-Franka: Captured
using external cameras (Realsense D415 and Microsoft
Azure Kinect), these datasets showcase the Franka Emika
Panda robot in motion. RealSense-Franka comprises 4 videos
(3931 images), while AzureKinect-Franka has 5 videos
(5576 images). Each video starts with a stationary camera
that eventually moves. Regarding annotation, we firstly use
COLMAP [36] to calibrate the camera extrinsics. Then, the
initial frame in each video segment is manually annotated for
robot pose and joint angles. Finally, leveraging the calibrated
camera extrinsics, we automatically get the annotations for
the entire video segment. Both datasets include RGB images,
robot pose, joint angles, and depth images.

2) Baselines: We compare our approach with previous
methods in both unknown and known joint angles scenarios.
Unknown Joint Angles: RoboPose [8]: A state-of-the-art
(SOTA) method that employs render&compare to deduce
joint angles and robot pose. SPDH [9]: A direct method

that derives 3D robot pose from a single depth map using
semi-perspective decoupled heatmaps. Known Joint Angles:
Dream [5]: An innovative technique that infers robot pose
from a single frame via 2D heatmap regression and PnP-
RANSAC solving. SGTAPose [6]: A pioneering approach
that leverages temporal information for robot pose estimation.
CtRNet [7]: A pioneering approach that introduces a self-
supervised strategy for online camera-to-robot calibration.
3) Metrics: We evaluate 3D metrics across all datasets.
ADD: The average Euclidean norm between 3D keypoints
and their transformed versions, measuring the pose estimation
accuracy. We compute the area under the curve (AUC) lower
than a fixed threshold (10cm), median and mean values.

B. Comparison with Baselines

Table [I| showcases a notable performance enhancement of
our method compared to state-of-the-art (SOTA) techniques.
In single-frame scenarios, our approach surpasses the current
SOTA, RoboPose [8], by 37.99% and 28.72% in AUC
for RealSense-Franka and AzureKinect-Franka, respectively.
Moreover, our inference speed increases from 1FPS to 12
FPS in the single-frame mode. This is due to the iterative
rendering process involved in RoboPose, which is highly
time-consuming. In online scenarios, our method consistently
outperforms RoboPose. Besides, the visualisation results in
Figure |3| also support our method’s superiority, where white
boxes highlight our better predictions than RoboPose’s [8].
Our faster inference speed is attributed to the efficient DDIM
sampler [33] and our online sampling strategy, both of which
significantly reduce sampling steps. Compared to the depth-
based SPDH [9], our method, despite a marginally slower
inference speed, exhibits considerable advantages, particularly
in AzureKinect-Franka. This is attributed to the theoretical
limitations of the cross-camera generalisation issue. We will
discuss this in Sec [V=-C] The commendable results of our
approach can be credited to our decoupling scheme, allowing
each module to specialise in a simpler sub-task.

C. Cross-Camera Generalisation Analysis
In practice, an ideal online calibration tool should adapt to

different cameras. In this section, we evaluate our method’s
cross-camera generalisation capacity against the keypoint-
based approach SPDH [9] in the context of unknown joint
angles. To ensure a fair comparison, we create three synthetic
datasets emulating distinct camera fields of view (FOV):
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Fig. 3.

Visualisation results on real-world datasets. Green edges are ground truth while red edges are rendered via estimated robot pose and joint angles.

White boxes highlight regions where ours (online) performs better than RoboPose (online) [8].

TABLE II
QUALITATIVE RESULTS OF THE CROSS-CAMERA EXPERIMENT. RESULTS
SHOW THAT OUR METHOD PERFORMS ROBUSTLY ACROSS DIFFERENT
CAMERAS WHILE SPDH [9] FLUCTUATES DRAMATICALLY.

Method AUC@0.Ilm  Median(m) Mean(m)
SimXBox360Kinect (FOV@62.73)
SPDH-HRNET [9] 60.80 0.034 0.058
SPDH-SH [9] 71.20 0.027 0.029
SPDH-RESNET [9] (Ours) 69.84 0.029 0.030
Ours (online) 77.47 0.017 0.025
SimSense (FOV@70.21)
SPDH-HRNET [9] 7.88 1.269 1.084
SPDH-SH [9] 61.37 0.038 0.039
SPDH-RESNET [9] (Ours) 58.98 0.040 0.041
Ours (online) 76.53 0.018 0.026
SimAzureKinect (FOV@93.01)

SPDH-HRNET [9] 0.00 2.097 2.064
SPDH-SH [9] 0.04 0.413 0.449
SPDH-RESNET [9] (Ours) 0.00 0.211 0.233
Ours (online) 69.01 0.022 0.040

SimXBox360Kinect(FOV @62.73), SimSense(FOV @70.21),
and SimAzureKinect(FOV@93.01), keeping other elements,
such as robot pose, robot joint angles, and background, consis-
tent. Table [[I] reveals a notable performance decline for SPDH
across varying cameras, while our method remains stable.
This observation is reinforced by results from the real datasets
RealSense-Franka and AzureKinect-Franka in Table [l The
primary reason for this substantial difference is that SPDH
relies on XYZ-maps as inputs and employs convolutional
networks as backbones. Consequently, when the topological
structures of XYZ-maps are transformed due to changes
in camera intrinsics, the translation invariance property of
convolutional networks leads to misguided predictions in
SPDH’s UZ map. Our method’s resilience is attributed to our
task decoupling. Specifically, for the conditional 3D keypoints
generation, we employ normalised camera coordinates ¢,
unaffected by camera intrinsic alterations. Additionally, prior
studies [5] have already proved the satisfying cross-camera
generalisation capacity of 2D keypoints detection.

D. Ablaton Studies

1) Conditional generation vs. regression: Here we evaluate
the efficacy of our conditional 3D generation module against
direct regression. Utilising the framework by Martinez et

TABLE III
ABLATION BETWEEN GENERATION AND REGRESSION.
Method 2D AUC@0.lm  Median(m)  Mean(m)
RealSense-Franka
Regression GT 37.48 0.060 0.067
Regression  Prediction 30.84 0.064 0.084
Generation GT 83.51 0.015 0.016
Generation  Prediction 72.93 0.022 0.028
AzureKinect-Franka
Regression GT 43.28 0.049 0.067
Regression  Prediction 37.66 0.058 0.076
Generation GT 82.33 0.016 0.018
Generation  Prediction 63.33 0.028 0.046

al. [37], we adapt it as a regression baseline to transform 2D
keypoints into 3D. Table [[TI] contrasts our method with this
baseline, underscoring a significant enhancement with our
method. This improvement can be credited to the generative
models’ advanced nonlinear modeling capabilities and their
resilience to noise disturbances frequently observed in 2D
keypoints detection, such as missing or noisy keypoints.
TABLE IV
IMPORTANCE OF CONDITIONING ON NORMALISED CAMERA
COORDINATES TO GENERATE 3D KEYPOINTS ACCURATELY.

Method AUC@0.lm  Median(m) Mean(m)
RealSense-Franka
w/o NCCS (online) 0.00 0.413 0.434
Ours (online) 72.93 0.022 0.028
AzureKinect-Franka
w/o NCCS (online) 0.00 0.397 0.412
Ours (online) 63.33 0.028 0.046

2) Normalised camera coordinate space (NCCS): Here we
highlight the impact of normalised camera coordinates space.
In Table [[V] w/o NCCS indicates models trained solely on
raw 2D keypoints. Notably, w/o NCCS exhibits a substantial
error, approximating 40cm in both median and mean ADD.
The reason behind this exceptionally poor performance is that
the diffusion model not only needs to memorise the robot’s
structural information, but also excessively fits to the fixed
training camera intrinsics and projection formula. Therefore,
when exposed to a novel camera, w/o NCCS struggles to
adjust to the altered intrinsics. Conversely, the integration of
NCCS provides a standardised 2D representation, effectively
mitigating disruptions from diverse intrinsics and ensuring
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Fig. 4. Ablation on different number of 3D keypoints candidates K. We
finally adopt K = 10 in implementation.

consistent performance across varying cameras.
TABLE V

ABLATION ON DIFFERENT SAMPLERS AND INITIALIZATIONS.

Sampler  Online AUC@0.Ilm  Median(m) Mean(m) FPS
RealSense-Franka
ODE 55 64.85 0.032 0.037 1
DDIM 55 67.00 0.027 0.035 12
ODE v 73.94 0.021 0.027 14
DDIM v 72.93 0.022 0.028 18
AzureKinect-Franka
ODE 55 62.61 0.029 0.047 1
DDIM 55 60.72 0.030 0.049 12
ODE v 62.90 0.029 0.044 14
DDIM v 63.33 0.028 0.045 18

3) Samplers and initializations: We investigate the impact
of different sampling solvers, specifically ODE [38] and
DDIM [33], coupled with distinct initialization techniques
on the sampling procedure. Table [V] demonstrates that the
DDIM solver significantly reduces sampling time compared

to the ODE solver, yet maintains comparable performance.

Furthermore, Online initialization consistently outperforms
the initialization from Gaussian noise in terms of both
inference speed and performance, regardless of the type of
solvers. This superiority of the Online initialisation can be
attributed to its use of predictions from the last frame, which

offers an initialisation proximate to the genuine distribution.

Consequently, this enables shorter sampling steps and helps
circumvent certain local optima. All the inference speeds
were tested using a single V100 GPU.

4) Number of candidates: Figure [ elucidates the impact
of the number of 3D keypoints’ candidates K during inference
time. Regarding the AUC in RealSense Franka, the network’s
performance shows a great enhancement when K rises from 1
to 10. This can be explained that the augmented size of
samples leads to a keypoints candidate set more closely
aligned with the predicted distribution. Nonetheless, the
enhancement becomes marginal as K extends to 100, likely
due to the mean predictions nearing the upper limit of
the sampling strategy. In view of the trade-off between
performance and overhead, we adopt K = 10.

E. Additional comparison in settings with known joint angles.

While our primary emphasis is on estimating the robot pose
and joint angles, our method demonstrates a marked advantage
over prior methods, even when estimating robot pose with
known joint angles. In this setting, we straightforwardly

TABLE VI
ADDITIONAL COMPARISON WITH BASELINES IN SETTINGS WITH KNOWN
JOINT ANGLES. "-" DENOTES ERRORS LARGER THAN 5M.

Method AUC@0.lm  Median(m) Mean(m)
RealSense-Franka

Dream-VGG-Q [5] 27.48 0.080 0.244
Dream-VGG-F [5] 2.31 1.385 -

Dream-RESNET-H [5] 40.75 0.053 0.177
Dream-RESNET-F [5] 20.31 1.095 -

RoboPose (single-frame) [8] 44.21 0.050 0.062

RoboPose (online) [8] 44.18 0.050 0.062

SGTAPose [6] 52.00 0.036 1.370

CtRNet [7] 59.51 0.031 0.056

Ours (single-frame) 68.34 0.025 0.033

Ours (Online) 74.76 0.020 0.026

AzureKinect-Franka

Dream-VGG-Q [5] 32.35 0.075 0.352
Dream-VGG-F [5] 0.37 1.471 -

Dream-RESNET-H [5] 51.05 0.038 0.133
Dream-RESNET-F [5] 38.60 0.053 -

RoboPose (single-frame) [8] 41.50 0.053 0.062

RoboPose (online) [8] 41.59 0.053 0.062

SGTAPose [6] 44.80 0.050 0.129

CtRNet [7] 55.22 0.035 0.062

Ours (single-frame) 63.74 0.027 0.045

Ours (Online) 66.84 0.025 0.041

employ ground truth joint angles to reconstruct X" in Secm
[Cl devoid of any specific additional design. As illustrated in
Table [VI, our method consistently outperforms others across
all evaluation metrics. Notably, relative to SGTAPose [6],
which integrates temporal information, our method exhibits a
20% enhancement in AUC. Moreover, against the CtRNet [7]
that relies on additional real images for self-supervision, our
method maintains superior performance with respect to ADD
median and mean, achieving an average decrease of nearly
1 cm and 2.5 cm, respectively. It’s pivotal to note that our
method excels even in the absence of known joint angles,
outpacing alternative methods that utilise them.

V. CONCLUSION AND DISCUSSION

In this paper, we tackle the challenges in robot pose and
joint angles estimation, specifically the efficiency-performance
trade-off and cross-camera generalisation. To this end, we
propose a novel framework named RoboKeyGen, which
decouples this task into 2D keypoints detection and lifting 2D
keypoints to 3D. Our method achieves high performance while
preserving the efficiency inherent in keypoints-based methods.
Our diffusion-based, conditional 3D keypoints generation
effectively manages uncertainties arising from errors in 2D
keypoints detection. Moreover, incorporating Normalised
Camera Coordinate Space (NCCS) handles cross-camera
generalisation issue. Experimental results show the effective-
ness of our approach over state-of-the-art methods, achieving
better performance with higher inference speed and improved
cross-camera generalisation. Limitations and future works:
One of limitations of our method is efficiency. Although
our method outperforms render&compare based methods in
performance and inference speed (18 FPS), it doesn’t meet
real-time requirements in certain scenarios. Future research
could further explore faster sampling techniques.
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